Videoini menjelaskan cara menentukan nilai selisih dari nilai tertinggi dan terendah dari data statistika yang diberikan. Matematika SD Kelas 6 Bab Mengolah Data Sub bab Mengurutkan Data dan

Jangkauan suatu data adalah selisih datum terbesar dengan datum terkecilDalam statistika jangkauan merupakan selisih antara nilai tertinggi dari sebuah kumpulan data dengan nilai terendah dari sebuah kumpulan datamohon untuk diteliti kembali Selisih data terbesar dan terkecil disebut dengan JANGKAUANsemoga membantu,,jadikan jawaban terbaik yaa

Distribusifrekuensi adalah daftar nilai data (bisa nilai individual atau nilai data yang sudah dikelompokka) Range = Selisih antara nilai tertinggi dan terendah. Dan pada contoh ujian di atas, Range = 99 - 35 = 64. Batas bawah kelas = Nilai terkecil yang berada pada setiap kelas. (Contoh nya pada Tabel 3 di atas, batas bawah kelas nya Selamat datang di web digital berbagi ilmu pengetahuan. Kali ini PakDosen akan membahas tentang Estimasi? Mungkin anda pernah mendengar kata Estimasi? Disini PakDosen membahas secara rinci tentang pengertian, jenis, ciri, metode dan contoh. Simak Penjelasan berikut secara seksama, jangan sampai ketinggalan. Estimasi merupakan suatu metode dimana kita dapat memperkirakan nilai Populasi dengan memakai nilai sampel. Misalnya rata-rata sampel digunakan untuk menaksir rata-rata pupolasi proporsi sampel untuk menaksir proporsi populasi p , dan jumlah ciri tertentu sampel untuk menaksir jumlah ciri tertentu populasi. Nilai penduga disebut dengan estimator, sedangkan hasil estimasi disebut dengan estimasi secara statistik. Jenis-jenis Estimasi Berikut ini adalah beberapa jenis-jenis estimasi yaitu 1. Estimasi Titik Titik estimasi merupakan salah satu cara untuk mengadakan estimasi terhadap parameter populasi yang tidak diketahui. Titik estimasi ialah nilai tunggal yang digunakan untuk mengadakan estimasi terhadap parameter populasi. Titik estimasi yang dapat digunakan untuk mengadakan estimasi parameter populasi ialah rata-rata sampel terhadap rata-rata populasi, proporsi sampel terhadap proporsi populasi, jumlah variabel tertentu yang terdapat dalam sampel untuk menaksir jumlah variabel tersebut dalam populasi, dan varians atau simpangan baku sampel untuk menaksir simpangan baku populasi. E µ = ; E 2 = S2 ; E p = 2. Estimasi Interval Dari penelitian dan perhitungan-perhitungan harga statistik suatu sampel, bisa dihitung suatu interval dimana dengan peluang tertentu harga parameter yang hendak ditaksir terletak dalam interval tersebut. Estimasi interval merupakan sekumpulan nilai statistik sampel dam interval tertentu yang digunakan untuk mengadakan estimasi terhadap parameter populasi dengan harapan bahwa nilai parameter populasi terletak dalam interval tersebut. Estimasi Rata – rata dalam statistik di asumsikan suatu ukuran sampel dikatakan besar apabila n ≥ 30, sampel dikatakan kecil apabila n ≤ 30. Estimasi rata-rata untuk sampel kecil n < 30, maka interval konfidensi untuk m adalah – t n-1 ; a/2 . S ≤ μ ≤ + t n-1 ; α/2 . S √n √n Ciri-ciri Estimasi Berikut ini adalah beberapa ciri-ciri estimasi yaitu Tidak bias Jika mean dari distribusi sampling suatu statistik sama dengan parameter populasi korespondensinya, maka statistik ini disebut sebagai estimator tak bias dari parameter tersebut. Kebalikannya, jika mean dari distribusi sampling suatu statistik tidak sama dengan parameter populasi korespondensinya, maka statistik ini disebut sebagai estimator bias dari parameter tersebut. Nilai-nilai korespondensi dari statistik-statistik ini msaing-masing disebut estimasi bias dan estimasi tak bias. Efisien Jika distribusi sampling dari dua statistik memiliki mean atau ekspektasi yang sama, maka statistik dengan varians yang lebih kecil disebut sebagai estimator efisien dari mean, sementara statistik yang lain disebut sebagai estimator tak efisien. Adapun nilai-nilai yang berkorespondensi dengan statistik-statistik ini masing-masing disebut sebagai estiamsi efisien dan estimasi tak efisien. Jika semua kemungkinan statistik yang distribusi samplingnya memiliki mean yang sama, maka statistik dengan varian terkecil terkadang disebut sebagai estimator paling efisien atau terbaik dari mean ini. Konsisten Bila besarnya sampel bertambah maka hampir dapat dipastikan bahwa nilai statistik sampel akan lebih mendekati nilai parameter populasi, estimator demikian disebut konsisten. Estimator konsisten adalah estimator yang cenderung sarna dengan nilai sebenarnya meskipun ukuran sampel semakin lama semakin besar. Dalam Kasus ini, apakah kita tahu bahwa nilai barn dari x akan lebih mendekati mean rata-rata Dari Atau ada kemungkinan lebih jauh? Estimator Yang konsisten adalah estimator yang akan bergerak mendekati nilai sebenarnya bila jumlah elemen sampel ditambah. Metode Klasifikasi Estimasi Pada umumnya, klasifikasi dan estimasi biaya yang lebih dapat diandalkan diperoleh dengan menggunakan pendekatan analisis biaya masa lalu, dengan beberapa metode yaitu 1. Metode Titik Tertinggi dan Titik Terendah High and Low Point Method Metode titik tertinggi dan titik terendah yaitu suatu metode pemisahan biaya campuran ke dalam elemen-elemen biaya tetap dan biaya variabelnya dengan mendasarkan analisis pada selisih biaya antara tingkat aktivitas tertinggi dan terendah. Maksud dari titik tertinggi dan terendah disini adalah titik tertinggi adalah suatu titik dengan tingkat output dan aktivitas tertinggi sedangkan titik terendah adalah titik dengan tingkat output dan aktivitas yang terendah. Secara umum perhitungan metode titik tertinggi dan terendah dapat dilakukan dengan cara Memilih jumlah biaya paling tinggi dari data yang tersedia. Memilih jumlah biaya paling rendah dari data yang tersedia. Menghitung selisih jumlah aktivitas dan selisih biaya dari dua titik tertinggi dan terendah. Memasukan selisih kedalam formula untuk menghitung komponen biaya tetap dan biaya variabel. 2. Metode Biaya Berjaga Stand By Cost Method Metode biaya berjaga digunakan untuk menaksir biaya tetap dan biaya variabel bila sebuah perusahaan menutup kegiatan usahanya untuk sementara. Metode ini disebut biaya berjaga karena untuk menghitung cadangan dana yang harus disiapkan untuk berjaga-jaga selama tenggang waktu tanpa kegiatan normal. Metode ini mencoba menghitung beberapa biaya yang harus tetap dikeluarkan andai kata perusahaan ditutup untuk sementara, jadi produknya sama dengan nol. Biaya ini disebut biaya terjaga, dan biaya terjaga ini merupakan bagian yang tetap. 3. Metode Kuadrat Terkecil Least-Square Method Pada umumnya metode kuadrat terkecil dimulai dari asumsi bahwa terdapat hubungan yang linier antara variabel terikat dan variabel bebas. Asumsi ini juga dapat diterapkan dalam analisis hubungan perilaku biaya dengan faktor yang menyebabkan terjadinya biaya yang bersangkutan. metode kuadrat terkecil juga membuat asumsi tentang sifat dan distribusi “eror term” dalam estimasi hubungan antara biaya overhead dan jam mesin. Atas dasar asumsi tersebut maka dianggap bahwa fluktuasi biaya sebagai variabel terikat y akan ditentukan secara linier oleh perubahan volume aktivitas x sebagai variabel bebasnya. Metode ini merupakan pengukuran dari jumlah biaya yang ada untuk mengetahui rata-rata biaya tetap dan rata-rata biaya variabel. Metode kuadrat terkecil untuk mengestimasi suatu hubungan linier didasarkan pada persamaan untuk sebuah garis lurus y = a + bx. Contoh Kasus Estimasi Tingkah Laku Biaya KOBEE adalah sebuah perusahaan yang memproduksi lampu, yang mempunyai data barang terjual dan biaya selama satu semester tahun 2017 sebagai berikut BULAN UNIT YANG TERJUAL BIAYA PENJUALAN JANUARI Rp FEBRUARI Rp MARET Rp APRIL Rp MEI Rp JUNI Rp Pertanyaan Tentukanlah persamaan garis linear dengan metode titik tertinggi dan titik terendah high and low point method jika dalam anggaran akhir tahun 2017 PT. KOBEE merencanakan menaikan penjualan sebesar unit yang terjual. Berapakah jumlah biaya penjualan yang harus dikeluarkan ? Tentukanlah persamaan garis linear dengan metode biaya terjaga stand by method, dengan biaya tetap fixed cost yang dikeluarkan sebesar Rp. per bulan. Jika perusahaan menaikan penjualan sebesar berapakah jumlah biaya penjualan total sales expence yang harus dikeluarkan oleh PT. KOBEE ? Tentukanlah persamaan garis linear dengan metode kuadrat terkecil least-square method jika perusahaan merencanakan menaikan unit yang terjual. Berapakah jumlah biaya penjualan yang harus dikeluarkan ? Jawaban Contoh Kasus 1. Metode High And Low Point Mencari biaya variabel b b = Y2-Y1 = – X2-X1 – = = 50 per unit yang terjual Mencari biaya tetap a a = Y2 ̶ bX2 = ̶ 50 = ̶ = Persamaan garis linear Y = a + b X , dimana a= biaya tetap, b= biaya variabel Y = + 50 X Kenaikan unit yang terjual sebesar maka Y = + 50 = Jadi, biaya penjualan yang dikeluarkan PT. KOBEE jika unit yang terjual dinaikan menjadi unit adalah sebesar Rp 2. Metode Berjaga-jaga Biaya yang dikeluarkan pada tingkat Rp Biaya tetap fixed cost Rp Selisih variance Rp Biaya variabel = Rp / = Rp 40 per unit yang terjual Persamaan garis linear Y = a + b X Y = + 40 X Kenaikan unit yang terjual sebesar maka Y = + 40 Y = Jadi, biaya penjualan yang dikeluarkan PT. KOBEE jika unit yang terjual dinaikan menjadi unit adalah sebesar Rp 3. Metode Least-Square BULAN UNIT X BIAYA PENJUALAN Y X2 XY JANUARI Rp Rp Rp FEBRUARI Rp Rp Rp MARET Rp Rp Rp APRIL Rp Rp Rp MEI Rp Rp Rp JUNI Rp Rp Rp Rp Rp Rp Demikian Penjelasan Materi Tentang Pengertian Estimasi Pengertian, Jenis, Ciri, Metode dan Contoh Semoga Materinya Bermanfaat Bagi Siswa-Siswi.
Latihan 1. Metode Titik tertinggi dan terendah Diketahui jam mesin dan biaya reparasi dan pemeliharaan mesin selama tahun 2006. Bulan Jam mesin Biaya reparasi dan pemeliharaan Januari 7750 Rp 560. 000 Pebruari 8000 Rp 600. 000 7500 Rp 550. 000 Nopember 6000 Rp 500. 000 Desember 7000 Rp 560. 000 Selisih tertinggiterendah 2000 Rp 100. 000
Hai adik-adik kelas 6 SD, berikut Osnipa akan membagikan Soal Penyajian Data dalam Bentuk Tabel dan Pembahasan. Kali ini kita akan membahas soal yang berkenaan dengan menyajikan data dalam bentuk tabel, menentukan banyak siswa sesuai data, menentukan data terendah, menentukan data tertinggi, dan menentukan selisih data tertinggi dengan terendah. 1. Data tinggi badan 20 siswa kelas 6 adalah sebagai berikut dalam cm . 155, 145, 130, 145, 150, 130, 160, 145, 135, 130, 155, 145, 140, 160, 135, 125, 145, 150, 140, 135. Sajikanlah data tersebut dalam bentuk tabel! Pembahasan Tinggi cmTurusFrekuensi125I1130III3135III3140II2145IIII5150II2155II2160II2Jumlah20 2. Banyak siswa yang mempunyai tinggi badan di atas 140 cm ada …. PembahasanBanyak siswa yang mempunyai berat badan di atas 140 cm1 Siswa dengan berat badan 145 cm sebanyak 5 siswa2 Siswa dengan berat badan 150 cm sebanyak 2 siswa3 Siswa dengan berat badan 155 cm sebanyak 2 siswa4 Siswa dengan berat badan 160 cm sebanyak 2 siswaBanyak siswa dengan berat badan di atas 140 cm = 5 + 2 + 2 + 2 = 11 siswa. 3. Tinggi badan terendah adalah … PembahasanTinggi badan terendah adalah 125 cm. 4. Siswa yang tinggi badannya tertinggi ada … siswa PembahasanSiswa yang tinggi badannya tertinggi ada 2 siswa. 5. Berapa selisih tinggi badan siswa yang tertinggi dan terendah? PembahasanTinggi badan siswa yang tertinggi 160 cmTinggi badan siswa yang terendah 125 cmSelisih tinggi badan siswa yang tertinggi dan terendah = 160 – 125 = 35 cm. Demikianlah Soal Penyajian Data dalam Bentuk Tabel dan Pembahasan. Semoga bermanfaat. Pengunjung 1,576
A) Frekuensi siswa yang tingginya 154cm = 11 Jumlah Frekuensi 8+13+60+11+6+2 = 100 persentase peserta yang tingginya 154: b.) tinggi badan tertinggi - tinggi badan terendah Ilustrasi cara menghitung nilai range. Foto ShutterstockDalam ilmu statistik, range atau jangkauan adalah perbedaan antara nilai tertinggi dan terendah dalam sebuah himpunan data. Dari nilai range yang diperoleh, dapat diketahui secara garis besar ukuran keragaman dari suatu buku Metode Statistika untuk Bisnis dan Ekonomi tulisan Dergibson Siagian dan Sugiarto, range merupakan ukuran variasi yang paling sederhana. Itulah mengapa range termasuk materi statistika yang mudah dihitung dan bagaimana cara menghitung nilai range? Berikut rumus beserta contoh soalnya yang dapat Menghitung Nilai RangeIlustrasi statistik. Foto PixabaySantosa dalam buku Statistika Hospitalitas menjelaskan, range dalam sebuah kelompok data menunjukkan kualitas data tersebut. Semakin kecil range, artinya data tersebut semakin yang bersifat heterogen cenderung memiliki range lebih besar daripada data yang bersifat homogen. Besarnya range sendiri mencakupRange persentil, yaitu nilai range pada ukuran-ukuran yang membagi data menjadi 100 bagian yang kuartil. Dalam suatu gugusan data terdapat tiga kuartil, yaitu kuartil 1 kuartil bawah, kuartil 2 kuartil tengah/median, dan kuartil 3 kuartil atas. Kuartil adalah nilai yang membagi sekumpulan data terurut menjadi empat bagian dengan jumlah kurang lebih sama. Range semi antarkuartil, yaitu setengah dari range dicari dengan melibatkan dua nilai, yaitu nilai terbesar atau tertinggi dan nilai terkecil atau terendah. Dijelaskan dalam buku Statistik Kesehatan Teori dan Aplikasi oleh I Made Sudarma Adiputra dkk. range dapat dibedakan menjadi dua, yaitu range data tunggal dan data menghitung nilai range dapat dilakukan menggunakan rumus berikutSementara itu, data berkelompok biasanya disajikan dalam bentuk tabel. Range data seperti ini bisa diperoleh dengan menghitung selisih nilai tengah atau tepi kelas. Tepi kelas terbagi menjadi dua, yakni tepi bawah dan tepi atas. Tepi bawah merupakan selisih batas bawah dengan nilai 0,5, sedangkan tepi atas merupakan penjumlahan dari batas atas dan nilai 0, SoalIlustrasi menghitung. Foto UnsplashAgar lebih memahaminya, simak contoh soal yang dikutip dari buku Dasar-Dasar Statistik Sosial karangan Muhammad Tanzil Aziz Rahimallah dkk. berikut ini1. Tentukan jangkauan data dari 1, 4, 7, 8, 9, 11!2. Tentukan range dari data berikut 4, 5, 7, 6, 11, Tentukan range dari data berikut 10, 10, 12, 15, 18, 204. Tentukan range dari data berikutXFrekuensi21-25516-20611-1586-1071-5aN30Kelas terendah adalah 1-5, maka titik tengah kelas terendah = 3Kelas tertinggi adalah 21-25, maka titik tengahnya = 23Tepi bawah kelas terendah = 0,5Tepi atas kelas tertinggi = 25,5Range berdasarkan titik tengah = 23 - 3 = 20Range berdasarkan tepi kelas = 25,5 - 0,5 = 255. Tentukan range dari data berikutSkor NilaiFrekuensi90-991680-891770-791560-69350-59240-493N56Kelas terendah adalah 40-49, maka titik tengahnya = 44,5Kelas tertinggi adalah 90-99, maka titik tengahnya = 94,5Tepi bawah kelas terendah = 39,5Tepi atas kelas tertinggi = 99,5Range berdasarkan titik tengah = 94,5 - 44,5 = 50Range berdasarkan tepi kelas = 99,5 - 39,5 = 60Apa yang dimaksud nilai range?Bagaimana cara menentukan nilai range?Apa itu kuartil?
6 Berapa selisih jumlah siswa yang tinggi badan tertinggi dan tinggi badan terendah? 7; 6; 4; 3; 7. Berikut merupakan data hasil ulangan siswa kelas 5 SD Nusa Bangsa. 75 80 85 87 77. 77 90 95 87 75. 80 87 90 90 75. 77 80 90 75 87
Cara Mencari Nilai Terbanyak, Tertinggi, Terendah Rata-rata dan Total - priacoding. Pada postingan priacoding sebelumnya kita telah membahas bagaimana Cara Membuat Barcode dan QRcode pada dan pada postingan kali ini kita akan membahas tentang bagaimana cara mencari nilai terbanyak, tertinggi, terendah rata-rata dan total, pada kasus ini implementasinya menggunakan Datagridview Untuk implementasinya langsung saja ikuti langkah-langkah berikut.. 1. Buat 1 buah project Tambahkan 1 Datagridview, 1 Button dan 4 buah Textbox, seperti gambar.. 2. Mencari nilai Tertinggi, Terendah, Rata-rata dan Total Double klik tombil "Proses", dan pastekan coding dibawah.. Dim tinggi, rendah, ratarata, total, banyak As Integer tinggi = From row As DataGridViewRow In Where Select .Max.ToString rendah = From row As DataGridViewRow In Where Select .Min.ToString ratarata = From row As DataGridViewRow In Where Select .Average.ToString For baris As Integer = 0 To - 1 total = total + Next = tinggi = rendah = ratarata = total Maka akan menghasilkan.. 3. Untuk mencari nilai terbanyak tambah 1 buah datagridview lagi, seperti gambar Pada tombol "Proses" silahkan tambahkan coding dibawah.. Dim hasil = From r As DataGridViewRow In Group r By key = Into Group Select id = key, jlh = For Each i In hasil Next banyak = Kira-kira coding keseluruhan, seperti dibawah.. Akhir Cara kerja → Isi Datagridview1 sesuai keinginan anda → Tekan tombol "Proses" Keterangan → Textbox1 = Untuk menampilkan nilai tertinggi → Textbox2 = Untuk menampilkan nilai terendah → Textbox3 = Untuk menampilkan nilai rata-rata → Textbox4 = Untuk menampilkan total → Datagridview2 = Untuk menampilkan nilai terbanyak dari Datagridview1 → Textbox5 = Untuk menampilkan nilai paling atas pada Datagridview2 Unduh Sourcecode Pass Terimakasih, semoga bermanfaat.. Baca Juga Tutorial 26 Cara Export Data Datagridview ke Ms. Excel Tutorial 27 Cara Membuat Grafik Line, Bar, Dkk Tutorial 28 Cara Membuat Barcode dan QRcode Note Himbauan Jika artikel ini memang berguna untuk teman-teman, MOHON artikel ini dibagikan kepada yang lain AGAR teman-teman kita juga mendapat manfaatnya. Terimakasih..
21Matematika Tabel 7.11 Distribusi Tinggi Badan Siswa Tinggi badan cm Banyak siswa yang mendaftar f i 140-144 7 145-149 8 Tinggi badan cm Banyak siswa yang mendaftar f i 150-154 12 155-159 16 160-164 24 165-169 13 170-174 2 Tentukanlah rentang range dari data distribusi di atas Alternatif Penyelesaian Range merupakan selisih antara data terbesar dengan data terkecil.
Di dalam artikel ini kamu dapat menemukan 6 buah contoh soal matematika SMP dalam bentuk pilihan ganda tentang cara menentukan ukuran penyebaran data beserta soal ini sudah disesuaikan dengan materi ukuran penyebaran data yang terdapat dalam bab statistika yang diajarkan pada kelas 8 SMP semester 2 kurikulum adalah soal Soal 1Diketahui sekumpulan data sebagai berikut5 8 9 3 2 7 5 10 16 12 8 3 7 4 2 10 5Jangkauan dari data tersebut adalah…….A. 10B. 12C. 14D. 16PembahasanYang dimaksud dengan jangkauan data adalah selisih data tertinggi dengan dan data terendah atau secara matematika dapat ditulisJangkauan data J = data tertinggi - data terendahAgar dapat mencari nilai terendah dan tertinggi suatu data, maka data tersebut perlu diurutkan terlebih 2 3 34 5 5 5 7 7 8 8 9 10 10 12 16J = data tertinggi-data terendah = 16 - 2 = 14Kunci Jawaban CContoh Soal 2Tabel di bawah ini menunjukkan waktu yang diperoleh oleh peserta dalam suatu pertandingan lari jarak pendek. Q1, Q2 dan Q3 dari data di atas secara berturut-turut adalah…….A. 8,9 - 9,5 dan 10,5B. 8,95 - 9,5 dan 10,0C. 8,95 - 9,9 dan 10,5D. 8,9 - 10,0 dan 10,0PembahasanQ1, Q2 dan Q3 merupakan lambang untuk kuartil I, kuartil II dan kuartil III. Kuartil II merupakan nilai yang membagi data menjadi dua bagian sama besar. Artinya kuartil II = adanya kuartil I dan kuartil III pada data akan membuat data tersebut menjadi empat bagian sama x x x x x x x x x Q1 Q2 Q3Data pada tabel diatas jika dijabarkan menjadi8,5 8,9 8,9 8,9 8,9 9,0 9,0 9,2 9,5 9,5 9,5 9,9 9,9 9,9 9,9 10,1 10,1 10,1 10,1 10,1Sebelumnya kalian sudah belajar menentukan letak dari median yaitu menggunakan rumus= n+1/2Atau = ½ n+1Median atau Q2n = jumlah data = 20Median atau Q2 terletak pada = ½ n+1= ½ 20+1 = 10,5 atau terletak antara data ke 10 dan ke ke-10 = 9,5 Data ke-11 = 9,5 Median = ½ 9,5+9,5 = 9,5 = Q2Kuartil I/Kuartil bawah/Q1Q1 terletak di sebelah kiri Q2 median. Karena median membagi data menjadi dua bagian sama besar, maka di sebelah kiri dan kanan Q2 akan terdapat masing-masing 10 membagi 10 data di sebelah kiri median menjadi dua bagian sama besar. Untuk menentukan letak Q1/kuartil bawah digunakan rumus = ½ n+1 dengan n = terletak pada = ½ n+1 = ½ 10+1 = 5,5 artinya Q1 terletak antara data ke-5 dan ke-6Data ke-5 = 8,9Data ke-6 = 9,0Q1 = 8,9 + 9,0/2 = 8,95 Kuartil III/Kuartil atas/Q3Q3 terletak di sebelah kanan median. Di sebelah kanan median tentu juga ada 10 data dan Q3 membaginya menjadi dua bagian sama terletak pada ½ n+1 = ½ 10+1 = 5,5 Q3 terletak pada data ke 5 dan ke 6 setelah medianData ke-5 setelah median = 9,9Data ke-6 setelah median = 9,9Q3 = 10,1 + 9,9/2 = 10 Kadi, Q1, Q2 dan Q3-nya berturut-turut adalah 8,95 - 9,5 - 10Kunci Jawaban BContoh Soal 3Berikut ini adalah daftar nomor celana pria yang akan di stok oleh sebuah toko 34 35 32 26 29 29 29 32 2728 40 30 30 30 26 29 32 31 4033 35 32 40 26 28 27 30 38 30Kuartil bawah, kuartil atas dan jangkauan interkuartil dari data tersebut adalah…….A. 29, 34, 5B. 29, 35, 6C. 30, 29, 1D. 30, 35, 4PembahasanLangkah pertama sebelum mencari Q1 dan Q2, tentu data diatas harus diurutkan terlebih dahulu. Berikut adalah hasil setelah 26 26 27 27 28 28 29 29 2929 30 30 30 30 30 31 32 32 32 32 33 34 35 35 38 38 40 40 40Untuk mencari Q1 dan Q3, harus terlebih dahulu dicari Q2 atau median dari data = 30MedianTerletak pada n+1/2 = 30 +1/2 = 15,5 antara data ke-15 dan 16Data ke-15 = 30Data ke-16 = 30Median = 30Dikiri median, terdapat 15 buah data. Q1 adalah nilai tengah 15 data terletak pada ½ n+1 = ½ 15+1 = data ke-8 hitung dari kiri.Q1 = 29Di kanan median juga terdapat 15 buah data. Disinilah Q3 berada. Berarti Q3 juga berada di data ke-8 tetapi disebelah kanan = 34Jangkauan interkuartil adalah selisih antara kuartil atas dan kuartil bawah atau secara matematika dapat ditulis26 26 26 27 27 28 28 29Q1 29 2929 30 30 30 30 median/Q2 30 31 32 32 32 32 33 34Q3 35 35 38 38 40 40 40Jangkauan interkuartil JI = Q3 - Q1Jangkauan interkuartil data diatas adalah= 34 - 29= 5Kunci Jawaban AContoh Soal 4Tabel di bawah ini menunjukkan jarak rumah siswa kelas 8A dengan sekolah. Berdasarkan tabel diatas maka pernyataan berikut yang tidak benar adalah…….A. Q1 = 1,0B. Q2 = 2,0C. Jangkauan data = 2,5D. Jangkauan interkuartil = 1,0PembahasanPertama-tama, kita cek dahulu kebenaran option B yaitu Q2 = mediannya. Jumlah data = jumlah siswa = 25Q2 terletak pada n+1/2 = 25+1/2 = data ke 13Q2 = 2,0 option B benarQ1 merupakan nilai tengah 12 data disebelah kiri median. Q1 terletak pada n+1/2 = 12+1/2 = 6,5 antara data ke 6 dan ke 7Data ke 6 = 1,0Data ke 7 = 1,0Berarti, Q1 = 1,0 option A benarJangkauan data = data tertinggi - data terendah = 3,0 - 0,5 = 2,5 option C benar.Jangkauan interkuartil = Q3 - Q1Q3 juga terletak antara data ke 6 dan ke 7 disebelah kanan medianQ2.Data ke 6 = 2,5Data ke 7 = 2,5Q3 = 2,5JI = 2,5 - 1,0 = 1,5 option D salah.Kunci Jawaban DContoh Soal 5Perhatikan diagram berikut Diagram diatas menunjukkan nilai yang diperoleh oleh siswa kelas 8C saat mengikuti ujian mata pelajaran IPA. Berdasarkan diagram tersebut maka pernyataan di bawah ini adalah benar kecuali……..A. Kuartil atas = 6B. Median = 8C. Jangkauan interkuartil = 2,5D. Simpangan kuartil = 1,25PembahasanData pada grafik diatas dapat dijabarkan menjadi5 5 6 6 6 6 6 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10Jumlah data = 28Q2 = ½ n+1 = ½ 28 + 1 = 14,5 diantara data ke 14 dan 15Q2 = 8 + 8/2 = 8 option B benar5 5 6 6 6 6 6 7 7 7 7 8 8 8 median 8 8 8 8 8 9 9 9 10 10 10 10 10 10Kuartil atas Q3= ½ 14 + 1 = 7,5 antara data 7 dan 8 disebelah kanan medianQ3 = 9 + 9/2 = 9 option A salah5 5 6 6 6 6 6 Q1 7 7 7 7 8 8 8 median 8 8 8 8 8 9 9 Q3 9 10 10 10 10 10 10Jangkauan interkuartil Q1 = ½ 14 + 1 = 7,5 antara data 7 dan 8Q1 = 6 + 7/2 = 6,5JI = Q3 - Q1 = 9 - 6,5 = 2,5 option C benarSimpangan kuartil = ½ jangkauan interkuartil = ½ x 2,5 = 1,25 option D benarKunci Jawaban AContoh Soal 6Median dari 12 buah data adalah 5 lebih lebihnya dari jangkauan. Jika semua data dikalikan 3 dan dikurangi 2 maka jumlah median dan jangkauan menjadi 34. Jangkauan data mula-mula adalah…….A. 3,5B. 7,0C. 7,5D. 12,0PembahasanMisalkan mula-mulaMedian = xData terendah = aData tertinggi = bJangkauan mula-mula = J1 = b - aMedian 12 data = 5 lebihnya dari jangkauan x = J1 + 5 ……..persamaan 1Kemudian semua data dikalikan 3 dan dikurangi 2, makaMedian = 3x - 2Data terendah = 3a - 2Data tertinggi = 3b - 2Jangkauan setelah datanya diubah= J2 = 3b - 2 - 3a - 2 = 3b - 3a = 3b-aSebelumnya kita dapatkan bahwa b - a = J1 jangkauan mula-mula.SehinggaJ2 = 3b - a = 3J1Setelah dilakukan perubahan pada datanya, median + jangkauan = 343x - 2 + J2 = 34 ganti J2 menjadi 3J13x - 2 + 3J1 = 343x - 2 + 3J1 = 343x + 3J1 = 34 + 23x + J1 = 36x + J1 = 36/3 x + J1 = 12 ……..persamaan 2Perhatikan persamaan 1 dan 2x = J1 + 5……..persamaan 1x + J1 = 12 ….. pernyataan 2Untuk mencari J1 atau jangkauan mula-mula, maka subtitusikan persamaan 1 ke persamaan + J1 = 2 ganti x menjadi J1 + 5J1 + 5 + J1 = 122J1 = 12 - 52J1 = 7J1 = 7/2 = 3,5Kunci Jawaban ANah, itulah 6 contoh soal matematika smp tentang cara menentukan ukuran penyebaran data beserta pembahasannya yang dapat saya bagikan pada artikel kali ini. Jika kalian menemukan kesalahan baik pada soal maupun pembahasan, kalian dapat mengoreksi dengan berkomentar pada kolom komentar dibawah ini. Terimakasih.
2 Xbar - S Chart, yaitu peta kendali variabel dimana data yang dikumpulkan dalam setiap pengamatan, dalam subgroup yang besarnya 10 atau lebih. Peta kendali ini digunakan jika ingin mengetahui stabilitas suatu proses, jika datanya adalah data variabel, jika setiap data yang dikumpulkan dalam bentuk subgroup yang besarnya > 9. contoh : diameter hasil potongan ampul, dan bobot tablet.
A. KartikaMahasiswa/Alumni Universitas Negeri Jakarta31 Januari 2022 1408Jawaban terverifikasiHalo Pratiwi, jawaban untuk pernyataan diatas adalah D. Range. Yuk, simak penjelasan berikut! Range rentang atau yang disebut juga dengan jangkauan adalah nilai data yang paling besar dan nilai data yang paling kecil. Jangkauan digunakan untuk menghitung selisih nilai tertinggi dan nilai terkecil dalam kelompok data tersebut. Terima kasih sudah bertanya dan menggunakan Roboguru, semoga membantu
N2zmL.
  • x3f0o4v68k.pages.dev/369
  • x3f0o4v68k.pages.dev/296
  • x3f0o4v68k.pages.dev/365
  • x3f0o4v68k.pages.dev/106
  • x3f0o4v68k.pages.dev/50
  • x3f0o4v68k.pages.dev/50
  • x3f0o4v68k.pages.dev/259
  • x3f0o4v68k.pages.dev/245
  • x3f0o4v68k.pages.dev/354
  • selisih data tertinggi dan terendah